

UNIVERSIDAD POLITÉCNICA DE MADRID

IoT Laboratory of Madrid city

https://iotmadlab.es/en/

Goals

- Harmonize future smart city implementations.
 - Identify open, neutral and interoperable IoT protocols and data models: technical requirements.
 - $\circ~$ Enable interaction among municipal services.
- Boost Public-Private Innovation towards optimization and competitiveness:
 - \circ Technological providers: devices, platforms, solutions, 5G operators.
 - Municipal services providers: management, applications, city platform.
 - Citizens: end user engagement & gamification.
 - \circ Training and education: new skills for students and unemployed.
 - GovTech: digital government transformation.
- Urban Smart Spaces as living labs:
 - Laboratory environment.
 - University campus controlled environment.
 - Real urban environment (one in each of the 21 city districts).

JDAD CONECTAD

Outdoor Laboratory: Smart space in a controlled area

-IOTELAB UNA CIUDAD CONECTADA

RV/AR Laboratory: Digital Twin development

UNA CIUDAD CONECTADA

-IOT & LAB

Smart Spaces in Madrid city

SUS#1 CASA DE CAMPO

The Large Gate at the entrance to the Casa de Campo Fairgrounds has been proposed as the first deployment of a first Smart Urban Space (SUS) in the city. This demonstrator space will allow citizen interaction with the possibilities of IoT technology, and involves addressing the need for interoperability between various Municipal Areas. The objective is to achieve the best personal experience with the services provided by the City Council, and to know its future.

SUS#2 VALDEMINGÓMEZ

The Valdemingómez Technology Park is a very important industrial environment for the city of Madrid. Together with its Visitor Centre, this Smart Urban Space integrates safety in mobility, energy efficiency and environmental quality control, and opens the way to many sustainability-oriented projects.

-IOT & LAB

UNA CIUDAD CONECTADA

SUS#3 MERCAMADRID

MERCAMADRID, the largest market in Spain, feeds the city and its area of influence. Its frenetic and early morning activity takes place in a highly optimised physical space, where the application of IoT is associated with 5G SA, the autonomous vehicle (for people and goods) and energy efficiency (photovoltaic production, data market, smart consumption).

SUS#1 Casa de Campo

7?

Outdoor exercise facilities

Parks and green areas

Mobility cameras

Parking areas

Waste bins and cans

VR digital twin experience

Street lighting fixtures

Citizens interaction

Bike lane

Integration in a 5G corridor

SUS#1 Casa de Campo

SUS#2 Valdemingomez

	ZONA/	LINEA	IDE	MODELO LUMINARIA				
03-01	1	3	1	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED				
03-02	1	3	2	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED				
03-03	1	3	3	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED				
03-04	1	3	4	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED				
03-05	1	3	5	5 LEDROAD-ST-P2- 4000k 80W - OPPLE				
03-06	1	3	6	LEDROAD-ST-P2- 4000k 80W - OPPLE				
03-07	1	3	7	7 LEDROAD-ST-P2- 4000k 80W - OPPLE				
03-08	1	3	8	LEDROAD-ST-P2- 4000k 80W - OPPLE				
03-09	1	3	9	9 LEDROAD-ST-P2- 4000k 80W - OPPLE				
03-10	1	3	10	0 LEDROAD-ST-P2- 4000k 80W - OPPLE				
04-01	1	4	1	1 ALFUM60 AE 4000K 60W - BENITO				
04-02	1	4	2	2 VEKA S 4000K 53,1W - CARANDINI				
04-03	1	4	3	3 VEKA S 4000K 53,1W - CARANDINI				
04-04	1	4	4	VEKA S 4000K 53,1W - CARANDINI				
04-05	1	4	5	VEKA S 4000K 53,1W - CARANDINI				
04-06	1	4	6	6 VEKA S 4000K 53,1W - CARANDINI				
04-07	1	4	7	7 VEKA S 4000K 53,1W - CARANDINI				
04-08	1	4	8	8 VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED				
04-09	1	4	9	9 VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED				
04-10	1	4	10	LO VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALEE				
05-01	1	5	1	ALFUM60 AE 4000K 60W - BENITO				
05-02	1	5	2	ALFUM60 AE 4000K 60W - BENITO				
05-03	1	5	3	ALFUM60 AE 4000K 60W - BENITO				
05-04	1	5	4	ALFUM60 AE 4000K 60W - BENITO				
05-05	1	5	5	ALFUM60 AE 4000K 60W - BENITO				
05-06	1	5	6	ALFUM60 AE 4000K 60W - BENITO				
05-07	1	5	7	7 TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCEL				
05-08 a	1	5	8	8 TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC				
05-08 b	1	5	8	8 TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC				
05-09 a	1	5	9	9 TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC				
05-09 b	1	5	9	9 TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC				
05-10 a	1	5	10	0 TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC				

10 TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC

A CIUDAD CONECTADA

-IOT & LAB

FABRICANTE								
Denominación Social:	Schréder							
Dirección física:	SCHRÉDER SOCELEC SA							
	Pol. Ind. El	Henares	-	Av.	Roanne	66		
	19180							
	Marchamalo (Guadalajara), España							
Dásina WER	+34 3 43 52 50 80							
Payina wed: Mail de centacte:	milto://sp.scnreder.com/es							
	marrow comercialspanioscin eder.com							
Clasificación	Luminaria viaria - Luminarias Post top							
Depeminación	Luminaria viaria > Luminarias Post-top							
Deforancia comorcial								
Versión / ferba de								
comercialización:								
Imagen								
URL del producto: https://sp.schreder.com/es/product					cion-led-			
<u>exterior-izylum</u>								
Características:	Altura recomendada para la instalación: 4 – 15 m.							
	Temperatura de funcionamiento: -40ºC a +55ºC.							
	Médule de LEDer (0 LEDe							
	riodato de <u>LEDS</u> ; 40 <u>LEDS</u> ,							
Sensores:	Como miembro fundador del consorcio Zhaga. Schréder ha							
	participado en la creación del programa de certificación Zhaga-							
	D4i y en la iniciativa de este grupo para estandarizar un							
	ecosistema interoperable.							
ANEXO I: CHECKLIST L								
Conector Zhaga superi	ог	Sí						
Conector Zhaga inferio	Sí							
Protocolo Dali4	Sí							
Alimentación	220 - 240 V							
Control con nodo <u>loT</u>	Sí							
Control con sensor PIA	Sí							
Descubrimiento en Pla	Sí							
Apertura sin herramie	Sí							

SUS#3 MercaMadrid

IoT Network ReferenceArchitecture

Object Name	ID Instances		Object URN		
Temperature Sensor	3303	Multiple	urn:oma:lwm2m:ext:3303		

-IOT§

UNA CIUDAD CONECTADA

Resource	ID	Oper.	Mandatory	Type	Units	Description
Sensor Value	5700	R	Mandatory	Float	Defined by	Current measured
					"Units" resource	sensor value
Min Measured	5601	R	Optional	Float	Defined by	The minimum value
Value					"Units" resource	measured by the sen- sor since power ON
Max Measured	5602	R	Optional	Float	Defined by	The maximum value
Value				"Units" resource	measured by the sen-	
						sor since power ON
Min Range	5603	R	Optional	Float	Defined by	The minimum value
Value					"Units" resource	that can be measured
Max Range	5604	R	Optional	Float	Defined by	The maximum value
Value					"Units" resource	that can be measured
Sensor Units	5701	R	Optional	String		Measurement units
						definition e.g. "Cel"
						for celsius
Reset Min and	5605	E	Optional	String		Reset the min and
Max Measured			-			max measured values
Values						to current value

ΔR

Collaborative work: between Madrid City (CCMAD) and UPM (GB2S and RSTI R&I Groups).

Global focus: cybersecurity threats in all IoT layers within a Smart City.

Real implementation: theoretical analysis and experimental validation in EUIs.

IoT devices and communications

GB2S RSTI

Centro de Ciberseguridad Ayuntamiento de Madrid

Cyber-situational awareness

Cybersecurity

UNA CIUDAD CONECTADA

Cybersecurity

Requirements Checklist

- 2.1. Componentes del dispositivo
- 2.1.1. Unidades de proceso
- 2.1.2. Memoria
- 2.1.3. Firmware
- 2.1.4. Servicios de intercambio de datos

ld

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

de

2.2. Interfaces del dispositivo

- 2.2.1. Interfaces internas
- Interfaces físicas (M2M) 2.2.2.
- Interfaces inalámbricas (M2M) 2.2.3.
- 2.2.4. Interfaces de usuario (H2M)

Descripción general del modelo 2.3.

Listado de requisitos 3.

3.1. Requisitos técnicos

- 3.1.1. Identidad de dispositivos y sistemas IoT
- Configuración de dispositivos loT 3.1.2.
- 3.1.3. Almacenamiento en la memoria del dispositivo
- Interfaces de comunicaciones 3.1.4.
- 3.1.5. Software, firmware v unidades de proceso
- 3.1.6. Servicios de intercambio de datos

3.2. Requisitos no técnicos

- 3.2.1. Documentación
- 3.2.2. Procesos de desarrollo seguros
- Gestión de vulnerabilidades 3.2.3.
- 3.2.4. Actualizaciones
- Privacidad 3.2.5.
- 3.2.6. Incumplimiento de requisitos

Checklist

Requisitos técnicos 4.1.

- 4.1.1. Identidad de dispositivos y sistemas IoT
- Configuración de dispositivos 4.1.2.
- 4.1.3. Almacenamiento en la memoria del dispositivo
- 4.1.4. Interfaces de comunicaciones
- Software, firmware y unidades de proceso 4.1.5.
- 4.1.6. Servicios de intercambio de datos

4.2. Requisitos no técnicos

- 4.2.1. Documentación
- 4.2.2. Procesos de desarrollo seguros

3.1.5. Software, firmware y unidades de proceso

3.1.2. Configuración de dispositivos IoT Requisito Descripción Requisito Descripción 2.1 Control de El dispositivo cuenta con mecanismos de Disponibilidad de En general se deberían deshabilitar o eliminar autenticación y autorización para el acceso acceso para funcionalidades v todas las funcionalidades o software no configuración que permita realizar cambios de software no necesario para el funcionamiento del configuración (incluyendo parámetros necesario dispositivo. críticos de seguridad) a través de alguna Privilegios Los dispositivos deben ejecutarse con el interfaz (física, inalámbrica, de usuario). mínimos mínimo nivel de privilegio posible para su 2.2 Configuración Si un dispositivo puede configurar la funcionamiento. seguridad de otro dispositivo en el entorno entre dispositivos El dispositivo debe contar con mecanismos Arrangue seguro IoT, debe poderse demostrar que los de arranque seguro. cambios de configuración se aplican en el Los dispositivos deben estar protegidos ante Protección ante otro dispositivo. el uso no autorizado de funciones de prueba debugging 2.3 Los parámetros críticos de seguridad, como Unicidad de o debugging. contraseñas, identidades, etc., deben ser parámetros Gestión de la

Stakeholders benefits

- Local government: IoT digital infrastructure harmonization. Technological vendors: alignment with a technical definition. Service providers: management capacity and competitiveness boost. Municipal areas: provider agnostic (higher competency and transparency).
- Research and academia: new collaboration and funding opportunities.Citizens: engagement and co-creation enabling.Education: digital and future skill courses and capacities.
- International community: network of IoT living labs.

Contact

Fernando Alvarez Digital Office - Madrid City Council

Asuncion Santamaria CEDINT - Universidad Politecnica de Madrid

Guillermo del Campo CEDINT - Universidad Politecnica de Madrid

https://iotmadlab.es/en/

https://www.linkedin.com/company/iotmadlab/

